a) Vì un+1−un=(n+1)x+2(n+1)y+1−nx+2ny+1
=x−2y[(n+1)y+1](ny+1) nên x>2y thì (un) tăng; x<2y thì (un) giảm.
b) un=an2+12n2+3=a2+2−3a2(2n2+3)⇒un+1=a2+2−3a2[2(n+1)2+3]
Xét hiệu H=un+1−un=2−3a2(12(n+1)2+3−12n2+3),∀n≥1(1)
Mà 2(n+1)2+3>2n2+3>0 nên 12(n+1)2+3<12n2+3
⇒12(n+1)2+3−12n2+3<0
H<0⇔2−3a2>0⇔a<23;
H>0⇔2−3a2<0⇔a>23.
Vậy a<23 thì (un) giảm; a>23 thì (un) tăng.