|
|
|
|
sửa đổi
|
tinh goccua duong thang va mat phang
|
|
|
tinh goccua duong thang va mat phang cho hinh vuong ABCD va$\Delta SAB$ deu canh anamtrong hai mat phang vuong goc.goi I la trung diem cua ABa,SI vuong goc(ABCD) va tinh goc hop boi SC voi (abcd)b,tinh goc cua SC hop voi(SAD)c,__________SI________(SDC)
tinh goccua duong thang va mat phang cho hinh vuong ABCD va$\Delta SAB$ deu canh a nam trong hai mat phang vuong goc.goi I la trung diem cua ABa,SI vuong goc(ABCD) va tinh goc hop boi SC voi (abcd)b,tinh goc cua SC hop voi(SAD)c,__________SI________(SDC)
|
|
|
đặt câu hỏi
|
tinh goccua duong thang va mat phang
|
|
|
cho hinh vuong ABCD va$\Delta SAB$ deu canh a nam trong hai mat phang vuong goc.goi I la trung diem cua AB a,SI vuong goc(ABCD) va tinh goc hop boi SC voi (abcd) b,tinh goc cua SC hop voi(SAD) c,__________SI________(SDC)
|
|
|
giải đáp
|
viết phương trình tiếp tuyến
|
|
|
f'($x_{o}$)=$(x_{0}^{2}-1)'(x_{0}+1)+(x_{0}+1)'(x_{0}^{2}-1)$ =2$x_{0}(x_{0}+1)+x_{0}^{2}-1$=$2{x_{0}}^{2}+2x_{0}+x^{2}_{0}-1=3{x_{0}}^{2}+2x_{0}-1$ (c) giao 0y=A(1;0).B(-1;0) $x_{0}=1=>f'(1)=4;pttt tai A:y-0=4(x-1)=>y=4x-4$
$x_{0}=-1=>f'(-1)=0;pttt taiB:y-0=0(x+1)=>y=0$
|
|
|
giải đáp
|
đại 11
|
|
|
b,(P) cat Ox tai A(1;O) B(-3;0) Ta co f'(x)=2x+2 phuong trinh tiep tuyen tai A(1:0) co $x_{0}$=1=>f'(1)=4: y-0 = 4(x-1) =>y = 4x - 4 phuong trinh tiep tuyen tai B(-3:0) co $x_{0}$ = -3 => f'(-3) =-4 y - 0= -4(x+3)=> y= - 4x-12 P cat truc Oy (ttu)
|
|
|
|
sửa đổi
|
đại 11
|
|
|
TXD D=Rf(x)=2+$\mathop {\lim }\limits_{x \to 2^{-}}$(ax+4)=2a+4+$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{3-\sqrt{5x-1}}{x-2}$=$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{9-5x+1}{(x-2)(3+\sqrt{5x-1})}$=$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{5(2-x)}{(x-2)(3+\sqrt{5x-1)}}$=$\frac{-5}{6}$neu $\mathop {\lim }\limits_{x \to 2^{-}}$f(x)=$\mathop {\lim }\limits_{x \to 2^{+}}$f(x)=>2a+4=$\frac{-5}{6}$=>a=$\frac{-29}{12}$=>ham so lien tuc tai x=2neu $\mathop {\lim }\limits_{x \to 2^{-}}$ # $\mathop {\lim }\limits_{x \to 2^{+}}$=>ham so khong lien tuc tai x=2
tren khoang ($-\infty;2) $ thi f(x)=ax+4 la ham da thuc lien truc tren ($-\infty ;2)$tren khoang(2;$+\infty $)thi f(x)=$\frac{3-\sqrt{5x-1}}{x-2}$ la phan thuc huu ti nen ham so lien tuc tren(2;+$\infty )$f(x)=2+$\mathop {\lim }\limits_{x \to 2^{-}}$(ax+4)=2a+4+$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{3-\sqrt{5x-1}}{x-2}$=$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{9-5x+1}{(x-2)(3+\sqrt{5x-1})}$=$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{5(2-x)}{(x-2)(3+\sqrt{5x-1)}}$=$\frac{-5}{6}$neu $\mathop {\lim }\limits_{x \to 2^{-}}$f(x)=$\mathop {\lim }\limits_{x \to 2^{+}}$f(x)=>2a+4=$\frac{-5}{6}$=>a=$\frac{-29}{12}$=>ham so lien tuc tai x=2neu $\mathop {\lim }\limits_{x \to 2^{-}}$ # $\mathop {\lim }\limits_{x \to 2^{+}}$=>ham so khong lien tuc tai x=2
|
|
|
giải đáp
|
đại 11
|
|
|
tren khoang ($-\infty;2) $ thi f(x)=ax+4 la ham da thuc lien truc tren ($-\infty ;2)$ tren khoang(2;$+\infty $)thi f(x)=$\frac{3-\sqrt{5x-1}}{x-2}$ la phan thuc huu ti nen ham so lien tuc tren(2;+$\infty )$ f(x)=2 +$\mathop {\lim }\limits_{x \to 2^{-}}$(ax+4)=2a+4
+$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{3-\sqrt{5x-1}}{x-2}$=$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{9-5x+1}{(x-2)(3+\sqrt{5x-1})}$
=$\mathop {\lim }\limits_{x \to 2^{+}}$$\frac{5(2-x)}{(x-2)(3+\sqrt{5x-1)}}$=$\frac{-5}{6}$ neu $\mathop {\lim }\limits_{x \to 2^{-}}$f(x)=$\mathop {\lim }\limits_{x \to 2^{+}}$f(x)=>2a+4=$\frac{-5}{6}$ =>a=$\frac{-29}{12}$=>ham so lien tuc tai x=2 neu $\mathop {\lim }\limits_{x \to 2^{-}}$ # $\mathop {\lim }\limits_{x \to 2^{+}}$=>ham so khong lien tuc tai x=2
|
|
|
|
đặt câu hỏi
|
tinh goc giua hai mat phang
|
|
|
cho S.ABCD day la hinh vuong canh a va SO vuong goc (ABCD)(O la tam cua day).goi M,N la trung diem cua SA,BC.Biet goc cua MN va(ABCD) la 60do 1,tinh MN va SO 2,Tinh goc cua MN voi mat phang (SBD)
|
|
|
|
sửa đổi
|
đung dinh nghia tinh dao ham tai 1diem
|
|
|
đung dinh nghia tinh dao ham tai 1diem f(x)=\begin{cases}x=\frac{\sin^{2} x}{x} \forall >0 \\ y=\sqrt{3} x^{2} + x \forall x\leq 0\end{cases} $x_{0}=0$
đung dinh nghia tinh dao ham tai 1diem f(x)=\begin{cases}x=\frac{\sin^{2} x}{x} \forall x >0 \\ y=\sqrt{3} x^{2} + x \forall x\leq 0\end{cases} $x_{0}=0$
|
|
|