cos2x−√3sinx+2=0⇔−2sin2x−√3sinx+3=0⇔{sinx=√32sinx=−√3(loại)cos3x+cosx+2sin2x−2=0⇔4cos3x−2cosx+2(sin2x−1)=0⇔cosx(4cos2x+2cosx−2)=0⇔{cosx=0,cosx=−1cosx=12sinx+9sinx3−8=0⇔12sinx3−4sin3x3−8=0⇔{sinx3=1sinx3=−2(loại)2cosx26x5+2cos8x5−cos4x5−3=0⇔cos12x5+cos4x5+2cos8x5−2(cos4x5+1)=0⇔2cos8x5(cos4x5+1)−2(cos4x5+1)=0⇔{cos8x5=1cos4x5=−15.2cos3x−sin(x−π6)−1=0⇔−2cos(3x+π)+cos((x−π6)+π2)−1=0Đặt t=x+π3 thì PT ⇔−2cos3t+cost−1=0⇔−8cos3t+7cost−1=0⇔{cost=−1cost=2+√64,cost=2−√64
cos2x−√3sinx+2=0⇔−2sin2x−√3sinx+3=0⇔{sinx=√32sinx=−√3(loại)cos3x+cosx+2sin2x−2=0⇔4cos3x−2cosx+2(sin2x−1)=0⇔cosx(4cos2x+2cosx−2)=0⇔{cosx=0,cosx=−1cosx=12sinx+9sinx3−8=0⇔12sinx3−4sin3x3−8=0⇔{sinx3=1sinx3=−2(loại)2cosx26x5+2cos8x5−cos4x5−3=0⇔cos12x5+cos4x5+2cos8x5−2(cos4x5+1)=0⇔2cos8x5(cos4x5+1)−2(cos4x5+1)=0⇔{cos8x5=1cos4x5=−15.2cos3x−sin(x−π6)−1=0⇔−2cos(3x+π)+cos((x−π6)+π2)−1=0Đặt t=x+π3 thì PT ⇔−2cos3t+cost−1=0⇔−8cos3t+7cost−1=0$\Leftrightarrow \left\{ \begin{array}{l} \cos t=-1\\ \cos t=\frac{2+\sqrt{6}}{4}(loại),\cos t=\frac{2-\sqrt{6}}{4} \end{array} \right.$