|
|
|
sửa đổi
|
Tính giới hạn hàm số
|
|
|
Tính giới hạn hàm số 1, $\mathop {\lim }\limits_{x \to \infty } $ $\frac{tanmx}{sinnx} $2, $\mathop {\lim }\limits_{x \to x_{0}} $ $\frac{tanx - tanx_{0}}{x - x_{0}} $3, $\mathop {\lim }\limits_{x \to \frac{\pi}{4}} $ $\frac{sinx - cosx}{\pi - 4x} $4, $\mathop {\lim }\limits_{x \to \frac{\pi}{2}} $ $\frac{cosx}{\pi - 2x} $
Tính giới hạn hàm số 1, $\mathop {\lim }\limits_{x \to 0 } $ $\frac{tanmx}{sinnx} $2, $\mathop {\lim }\limits_{x \to x_{0}} $ $\frac{tanx - tanx_{0}}{x - x_{0}} $3, $\mathop {\lim }\limits_{x \to \frac{\pi}{4}} $ $\frac{sinx - cosx}{\pi - 4x} $4, $\mathop {\lim }\limits_{x \to \frac{\pi}{2}} $ $\frac{cosx}{\pi - 2x} $
|
|
|
|
|
sửa đổi
|
Tính giới hạn hàm số
|
|
|
Tính giới hạn hàm số 1, $\mathop {\lim }\limits_{x \to \infty } $ $\frac{tanmx}{sinnx} $2, $\mathop {\lim }\limits_{x \to x_{0}} $ $\frac{tanx - tanx_{0}}{x - x_{0}} $3, $\mathop {\lim }\limits_{x \to \frac{\pi}{4}} $ $\frac{sinx - cosx}{\pi - 4x} $
Tính giới hạn hàm số 1, $\mathop {\lim }\limits_{x \to \infty } $ $\frac{tanmx}{sinnx} $2, $\mathop {\lim }\limits_{x \to x_{0}} $ $\frac{tanx - tanx_{0}}{x - x_{0}} $3, $\mathop {\lim }\limits_{x \to \frac{\pi}{4}} $ $\frac{sinx - cosx}{\pi - 4x} $ 4, $\mathop {\lim }\limits_{x \to \frac{\pi}{2}} $ $\frac{cosx}{\pi - 2x} $
|
|
|
|
|
đặt câu hỏi
|
Tính giới hạn hàm số
|
|
|
1, $\mathop {\lim }\limits_{x \to 0 } $ $\frac{tanmx}{sinnx} $
2, $\mathop {\lim }\limits_{x \to x_{0}} $ $\frac{tanx - tanx_{0}}{x - x_{0}} $
3, $\mathop {\lim }\limits_{x \to \frac{\pi}{4}} $ $\frac{sinx - cosx}{\pi - 4x} $
4, $\mathop {\lim }\limits_{x \to \frac{\pi}{2}} $ $\frac{cosx}{\pi - 2x} $
|
|
|
|
|
đặt câu hỏi
|
Biện luận hệ pt tuyến tính thuần nhất
|
|
|
$\begin{cases}x_{1} + 2x_{2} + 4x_{3} - 3x_{4} =0 \\ 3x_{1} + 5x_{2} + 6x_{3} - 6x_{4} =0 \\ 4x_{1} + 5x_{2} - 2x_{3} + 3x_{4} =0 \\ x_{1} + x_{2} -2x_{3} + mx_{4} =0 \end{cases}$
|
|
|
bình luận
|
Bài 108954 :Giải và biện luận hệ pt bạn ơi,cho mình hỏi: với m=3 mình thay vào hệ sau đó biến đổi sơ cấp rồi mới quay lại giải nghiệm tổng quát cho nó đơn giản hơn có đk k vâyk?
|
|
|
|
|
|
|