Phương trình ban đầu tương đương:
$\sin4x-(\cos4x+1)+4(\cos x-\sin x)=0$
$\Leftrightarrow 2\sin2x\cos2x-2\cos^22x+4(\cos x-\sin x)=0$
$\Leftrightarrow \cos2x(\sin2x-\cos2x)+2(\cos x-\sin x)=0$
$\Leftrightarrow (\cos^2x-\sin^2x)(\sin2x-\cos2x)+2(\cos x-\sin x)=0$
$\Leftrightarrow (\cos x-\sin x)\left[(\cos x+\sin x)(\sin2x-\cos2x)+2\right]=0$
$\Leftrightarrow (\cos x-\sin x)\left[(\sin x\sin2x-\cos x\cos2x)+(\sin2x\cos x-\sin x\cos2x)+2\right]=0$
$\Leftrightarrow (\cos x-\sin x)(\sin x-\cos 3x+2)=0$
$\Leftrightarrow \left[\begin{array}{l}\cos x=\sin x (1)\\\sin x-\cos3x+2=0 (2)\end{array}\right.$
Ta có:
$(1) \Leftrightarrow \tan x=1 \Leftrightarrow x=\dfrac{\pi}{4}+k\pi, k\in\mathbb{Z}$
$\sin x\ge-1,-\cos 3x\ge-1 \Rightarrow \sin x-\cos 3x+2\ge0$
suy ra: $(2) \Leftrightarrow \left\{\begin{array}{l}\sin x=-1\\\cos3x=1\end{array}\right.\Leftrightarrow \left\{\begin{array}{l}x=-\dfrac{\pi}{2}+k2\pi\\x=\dfrac{l\pi}{3}\end{array}\right.,k,l\in\mathbb{Z}$, vô nghiệm.
Vậy nghiệm của phương trình là: $x=\dfrac{\pi}{4}+k\pi, k\in\mathbb{Z}$