1. Ta có:
\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c}
=\dfrac{bc(b-c)+ac(c-a)+ab(a-b)}{abc}
=\dfrac{-(a-b)(b-c)(c-a)}{abc}
\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}
=\dfrac{a(c-a)(a-b)+b(b-c)(a-b)+c(b-c)(c-a)}{(a-b)(b-c)(c-a)}
=\dfrac{-(a^3+b^3+c^3)+(a+b)(b+c)(c+a)-5abc}{(a-b)(b-c)(c-a)}
=\dfrac{-3abc+(-c)(-a)(-b)-5abc}{(a-b)(b-c)(c-a)}
=\dfrac{-9abc}{(a-b)(b-c)(c-a)}
Suy ra: (\dfrac{b-c}{a}+\dfrac{c-a}{b}+\dfrac{a-b}{c})(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b})=9