BĐT cần chứng minh bị ngược dấu.
Áp dụng BĐT Bunhia ta có:
$(a+b\sqrt2+c\sqrt3)(\dfrac{1}{a}+\dfrac{\sqrt2}{b}+\dfrac{\sqrt3}{c})\ge(1+\sqrt2+\sqrt3)^2$
$\Rightarrow \dfrac{1}{a+b\sqrt2+c\sqrt3}\le\dfrac{1}{(1+\sqrt2+\sqrt3)^2}(\dfrac{1}{a}+\dfrac{\sqrt2}{b}+\dfrac{\sqrt3}{c})$
Tương tự ta có:
$\dfrac{1}{b+c\sqrt2+a\sqrt3}\le\dfrac{1}{(1+\sqrt2+\sqrt3)^2}(\dfrac{1}{b}+\dfrac{\sqrt2}{c}+\dfrac{\sqrt3}{a})$
$\dfrac{1}{c+a\sqrt2+b\sqrt3}\le\dfrac{1}{(1+\sqrt2+\sqrt3)^2}(\dfrac{1}{c}+\dfrac{\sqrt2}{a}+\dfrac{\sqrt3}{b})$
Cộng 3 BĐT trên lại ta được:
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le(1+\sqrt2+\sqrt3)(\dfrac{1}{a+b\sqrt2+c\sqrt3}+\dfrac{1}{b+c\sqrt2+a\sqrt3}+\dfrac{1}{c+a\sqrt2+b\sqrt3})$
Dấu bằng xảy ra khi: $a=b=c$