ĐK: $-2\le x\le2$
Đặt: $\sqrt{2x+4}=u;\sqrt{2-x}=v;u,v\ge0$
Khi đó, ta có hệ phương trình:
$\left\{\begin{array}{l}u+2v=2+\sqrt6\\u^2+2v^2=8\end{array}\right.$
$\Leftrightarrow \left\{\begin{array}{l}u=2+\sqrt6-2v\\(2+\sqrt6-2v)^2+2v^2=8\end{array}\right.$
$\Leftrightarrow \left\{\begin{array}{l}u=2+\sqrt6-2v\\6v^2-4(2+\sqrt6)v+2+4\sqrt6=0\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}\left\{\begin{array}{l}v=1\\u=\sqrt6\end{array}\right.\\\left\{\begin{array}{l}v=\dfrac{1+2\sqrt6}{3}\\u=\dfrac{4-\sqrt6}{3}\end{array}\right.\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x=1\\x=\dfrac{1}{9}(1-2\sqrt6-2\sqrt{22+8\sqrt6})\end{array}\right.$