|
giải đáp
|
BĐT 1
|
|
|
Cách 2:
Ta có: $(1-x)(1-y)\ge0 \Leftrightarrow 1+xy\ge x+y$ $\Leftrightarrow (1+xy)(x+y+2z)\ge(x+y)(x+y+2z)$ Lại có: $z\ge z^2\Rightarrow z(1+xy)\ge z^2$ Cộng 2 BĐT trên lại ta có: $(1+xy)(x+y+3z)\ge(x+y+z)^2\Rightarrow \dfrac{1}{1+xy}\le\dfrac{x+y+3z}{(x+y+z)^2}$ Tương tự ta có: $\dfrac{1}{1+yz}\le\dfrac{3x+y+z}{(x+y+z)^2};\dfrac{1}{1+xz}\le\dfrac{x+3y+z}{(x+y+z)^2}$ Cộng các BĐT trên lại với nhau ta có đpcm.
|
|
|
giải đáp
|
BĐT 4
|
|
|
Ta có: $S=\cos4A+2\cos A+2\cos(B+C)\cos(B-C)$ $=\cos4A+2\cos A[1-\cos(B-C)]$ Vì $\cos A>0,1-\cos(B-C)\ge0 \Rightarrow S\ge\cos4A\ge-1$ Min$S=-1 \Leftrightarrow A=\dfrac{\pi}{4};B=C=\dfrac{3\pi}{8}$
|
|
|
giải đáp
|
BĐT 1
|
|
|
Ta có: $(1-x)(1-y)\ge0 \Leftrightarrow xy+1\ge x+y$ Tương tự: $\left\{\begin{array}{l}yz+1\ge y+z\\xz+1\ge x+z\end{array}\right.$ Khi đó ta có: $(x+y+z)\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{zx+1}\right)$ $\le\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}+1+1+1$ $\le\dfrac{x}{yz+1}+\dfrac{y}{xz+y}+\dfrac{z}{xy+z}+3$ $=x\left(\dfrac{1}{yz+1}-\dfrac{z}{xz+y}-\dfrac{y}{xy+z}\right)+5$ $\le x\left(1-\dfrac{z}{z+y}-\dfrac{y}{y+z}\right)+5=5$
|
|
|
bình luận
|
T9 Bạn xem lại biểu thức ở vế phải nhá.
|
|
|
|
|
|
giải đáp
|
ứng dụng tích phân 32
|
|
|
a. Ta có: $\sqrt{x}=0 \Leftrightarrow x=0$ $\sqrt{x}=2-x \Leftrightarrow x=1$ $2-x=0 \Leftrightarrow x=2$ Suy ra: $S=\int\limits_0^1\sqrt xdx+\int\limits_1^2(2-x)dx$ $=\dfrac{2}{3}x\sqrt x \left|\begin{array}{l}1\\0\end{array}\right.+\left(2x-\dfrac{x^2}{2}\right)\left|\begin{array}{l}2\\1\end{array}\right.=\dfrac{7}{6}$
|
|
|
giải đáp
|
ứng dụng tích phân 30
|
|
|
a. Ta có: $(x-2)^2=4 \Leftrightarrow \left[\begin{array}{l}x=0\\x=4\end{array}\right.$ Suy ra: $S=\int\limits_0^4|(x-2)^2-4|dx$ $=\int\limits_0^4(4x-x^2)dx$ $=\left(2x^2-\dfrac{x^3}{3}\right)\left|\begin{array}{l}4\\0\end{array}\right.=\dfrac{32}{3}$
|
|
|
giải đáp
|
ứng dụng tích phân 34
|
|
|
Ta có: $4-x^2=2+x^2 \Leftrightarrow 2x^2=2 \Leftrightarrow x=\pm1$ Suy ra: $V=\pi\int\limits_{-1}^1(4-x^2)^2dx-\pi\int\limits_{-1}^1(2+x^2)^2dx$ $=\pi\int\limits_{-1}^1(x^4-8x^2+16)-\pi\int\limits_{-1}^1(x^4+4x^2+4)dx$ $=\pi\int\limits_{-1}^1(-12x^2+12)dx$ $=\pi(-4x^3+12x)\left|\begin{array}{l}1\\-1\end{array}\right.=16\pi$
|
|
|
giải đáp
|
ứng dụng tích phân 33
|
|
|
a. Ta có: $\sqrt x=-x \Leftrightarrow x=0$ Suy ra: $S(D)=\int\limits_0^5|\sqrt x-(-x)|dx$ $=\int\limits_0^5(\sqrt x+x)dx$
$=\left(\dfrac{2}{3}x\sqrt
x+\dfrac{x^2}{2}\right)\left|\begin{array}{l}5\\0\end{array}\right.=\dfrac{10}{3}\sqrt5+\dfrac{25}{2}$
|
|
|
giải đáp
|
ứng dụng tích phân 28
|
|
|
b. Ta có: $V(D,Oy)=\pi\int\limits_2^4(\sqrt{2y})^2dy$ $=2\pi\int\limits_2^4ydy$ $=\pi y^2 \left|\begin{array}{l}4\\2\end{array}\right.=12\pi$
|
|
|
giải đáp
|
ứng dụng tích phân 28
|
|
|
a. Ta có: $y=\dfrac{x^2}{2}\Leftrightarrow \left[\begin{array}{l} x=\sqrt{2y}\\x=-\sqrt{2y}\end{array} \right.$ Suy ra: $S(D)=\int\limits_2^4|\sqrt{2y}-(-\sqrt{2y})|dy$ $=2\sqrt2\int\limits_2^4\sqrt ydy$ $=\dfrac{4\sqrt2}{3}y\sqrt y \left|\begin{array}{l}4\\2\end{array}\right.=\dfrac{16}{3}(2\sqrt2-1)$
|
|
|
giải đáp
|
ứng dụng tích phân 14
|
|
|
Ta có: $S=\int\limits_0^1\dfrac{x^2}{8x^3+1}dx$ $=\dfrac{1}{24}\int\limits_0^1\dfrac{d(8x^3+1)}{8x^3+1}$ $=\dfrac{1}{24}\ln(8x^3+1)\left|\begin{array}{l}1\\0\end{array}\right.=\dfrac{\ln3}{12}$
|
|
|
giải đáp
|
ứng dụng tích phân 15
|
|
|
Ta có: $\dfrac{x^2}{4}=\dfrac{8}{x^2+4}\Leftrightarrow x^2=4 \Leftrightarrow x=\pm2$ Suy ra diện tích cần tìm là: $S=\int\limits_{-2}^2\left|\dfrac{x^2}{4}-\dfrac{8}{x^2+4}\right|dx$ $=\int\limits_{-2}^2\dfrac{8}{x^2+4}dx-\int\limits_{-2}^2\dfrac{x^2}{4}dx$ Đặt: $x=2\tan t \Rightarrow dx=2(\tan^2t+1)dt$ Đổi cận: $x=-2\Rightarrow t=-\dfrac{\pi}{4}$ $x=2\Rightarrow t=\dfrac{\pi}{4}$ Suy ra: $\int\limits_{-2}^2\dfrac{8}{x^2+4}dx=\int\limits_{-\pi/4}^{\pi/4}\dfrac{16(\tan^2t+1)dt}{4\tan^2t+4}$ $=\int\limits_{-\pi/4}^{\pi/4}4dt$ $=4t \left|\begin{array}{l}\dfrac{\pi}{4}\\\dfrac{-\pi}{4}\end{array}\right.=2\pi$ Mà ta có: $\int\limits_{-2}^2\dfrac{x^2}{4}dx=\dfrac{x^3}{12} \left|\begin{array}{l}2\\-2\end{array}\right.=\dfrac{4}{3}$ Suy ra: $S=2\pi-\dfrac{4}{3}$
|
|
|
giải đáp
|
ứng dụng tích phân 19
|
|
|
Ta có: $V(D,Ox)=\pi\int\limits_1^2xe^xdx$ $=\pi\int\limits_1^2xd(e^x)$ $=\pi xe^x \left|\begin{array}{l}2\\1\end{array}\right.-\pi\int\limits_1^2e^xdx$ $=2\pi e^2-\pi e-\pi e^x \left|\begin{array}{l}2\\1\end{array}\right.=\pi e^2$
|
|
|
giải đáp
|
ứng dụng tích phân 21
|
|
|
Ta có: $V(D,Ox)=\pi\int\limits_0^1(1+x^3)^2dx$ $=\pi\int\limits_0^1(1+2x^3+x^6)dx$ $=\pi\left(x+\dfrac{x^4}{2}+\dfrac{x^7}{7}\right)\left|\begin{array}{l}1\\0\end{array}\right.=\dfrac{23\pi}{14}$
|
|
|
giải đáp
|
ứng dụng tích phân 24
|
|
|
b. Ta có: $V(D,Ox)=\pi\int\limits_{-\pi/4}^{\pi/4}\tan^6xdx$ $=2\pi\int\limits_0^{\pi/4}\tan^6xdx$ $=2\pi\int\limits_0^{\pi/4}(\tan^6x+\tan^4x-\tan^4x)dx$ $=2\pi\int\limits_0^{\pi/4}\tan^4x(\tan^2x+1)dx-2\pi\int\limits_0^{\pi/4}(\tan^4x+\tan^2x-\tan^2x)dx$ $=2\pi\int\limits_0^{\pi/4}\tan^4xd(\tan x)-2\pi\int\limits_0^{\pi/4}\tan^2x(\tan^2x+1)dx+2\pi\int\limits_0^{\pi/4}(\tan^2x+1-1)dx$
$=\dfrac{2\pi\tan^5x}{5}\left|\begin{array}{l}\dfrac{\pi}{4}\\0\end{array}\right.-2\pi\int\limits_0^{\pi/4}\tan^2xd(\tan x)+2\pi\int\limits_0^{\pi/4}d(\tan x)-2\pi\int\limits_0^{\pi/4}dx$ $=\dfrac{2\pi}{5}-\dfrac{2\pi\tan^3x}{3}\left|\begin{array}{l}\dfrac{\pi}{4}\\0\end{array}\right.+2\pi\tan x\left|\begin{array}{l}\dfrac{\pi}{4}\\0\end{array}\right.-2\pi x\left|\begin{array}{l}\dfrac{\pi}{4}\\0\end{array}\right.$ $=\dfrac{26\pi}{15}-\dfrac{\pi^2}{2}$
|
|