Ta có: a+b+c=1a+1b+1c⇔a+b+c=ab+bc+ca⇔abc−ab−bc−ca+a+b+c−1=0⇔(a−1)(b−1)(c−1)=0$\Leftrightarrow \left[\begin{array}{l}a=1\\b=1\\c=1\end{array}\right.\Rightarrow M=1$
Ta có: a+b+c=1a+1b+1c⇔a+b+c=ab+bc+ca⇔abc−ab−bc−ca+a+b+c−1=0⇔(a−1)(b−1)(c−1)=0$\Leftrightarrow \left[\begin{array}{l}a=1\\b=1\\c=1\end{array}\right.\Rightarrow M=0$