∫1x4+1dx=∫1(x2−√2x+1)(x2+√2x+1)dx=12√2∫(√2−xx2−√2x+1+√2+xx2+√2x+1)dx=12√2∫(√2−x(x−1√2)2+(1√2)2+√2+x(x+1√2)2+(1√2)2)dxA=∫√2−x(x−1√2)2+(1√2)2dxĐặt u=x−1√2A=∫√2−2u1+2u2duB=∫√2+x(x+1√2)2+(1√2)2dxĐặt v=x+1√2B=∫√2+2v1+2v2dv
∫1x4+1dx=∫1(x2−√2x+1)(x2+√2x+1)dx=12√2∫(√2−xx2−√2x+1+√2+xx2+√2x+1)dx=12√2∫(√2−x(x−1√2)2+(1√2)2+√2+x(x+1√2)2+(1√2)2)dxA=∫√2−x(x−1√2)2+(1√2)2dxĐặt u=x−1√2$A=\int\limits_{}^{}\frac{\sqrt{2}-2u}{1+2u^{2}}du=\int\limits_{}^{}\frac{\sqrt{2}}{1+2u^{2}}-\frac{2u}{1+2u^{2}}B=∫√2+x(x+1√2)2+(1√2)2dx$Đặt$v=x+1√2B=\int\limits_{}^{}\frac{\sqrt{2}+2v}{1+2v^{2}}dv=\int\limits_{}^{}\frac{\sqrt{2}}{1+2v^{2}}+\frac{2v}{1+2v^{2}}$