\frac{{2x}}{{2{x^2} - 5x + 3}} + \frac{{13x}}{{2{x^2} + x + 3}} = 6 (1)Điều kiện: x \ne 1,x \ne \frac{3}{2}(1) \Leftrightarrow 4 - \frac{{2x}}{{2{x^2} - 5x + 3}} + 2 - \frac{{13x}}{{2{x^2} + x + 3}} = 0 \Leftrightarrow \frac{{8{x^2} - 22x + 12}}{{2{x^2} - 5x + 3}} + \frac{{4{x^2} - 11x + 6}}{{2{x^2} + x + 3}} = 0 \Leftrightarrow (4{x^2} - 11x + 6)(\frac{2}{{2{x^2} - 5x + 3}} + \frac{1}{{2{x^2} + x + 3}}) = 0 \Leftrightarrow 4{x^2} - 11x + 6 = 0 (2) hay 2(2{x^2} + x + 3) + 2{x^2} - 5x + 3 = 0 (3)(2) \Leftrightarrow x = \frac{3}{4} \vee x = 2$(3) \Leftrightarrow 2(2{x^2} + x + 3) + 2{x^2} - 5x + 3 = 0 \Leftrightarrow 6{x^2} - 3x + 9 = 0 (VN)Vậy phương trình có hai nghiệm phân biệt x = \frac{3}{4} hay x=2$.
\frac{{2x}}{{2{x^2} - 5x + 3}} + \frac{{13x}}{{2{x^2} + x + 3}} = 6 (1)Điều kiện: x \ne 1,x \ne \frac{3}{2}(1) \Leftrightarrow 4 - \frac{{2x}}{{2{x^2} - 5x + 3}} + 2 - \frac{{13x}}{{2{x^2} + x + 3}} = 0 \Leftrightarrow \frac{{8{x^2} - 22x + 12}}{{2{x^2} - 5x + 3}} + \frac{{4{x^2} - 11x + 6}}{{2{x^2} + x + 3}} = 0 \Leftrightarrow (4{x^2} - 11x + 6)(\frac{2}{{2{x^2} - 5x + 3}} + \frac{1}{{2{x^2} + x + 3}}) = 0 \Leftrightarrow 4{x^2} - 11x + 6 = 0 (2) hay 2(2{x^2} + x + 3) + 2{x^2} - 5x + 3 = 0 (3)(2) \Leftrightarrow x = \frac{3}{4} \vee x = 2(3) \Leftrightarrow 6{x^2} - 3x + 9 = 0 (VN)Vậy phương trình có hai nghiệm phân biệt x = \frac{3}{4} hay x=2.