|
|
|
giải đáp
|
Mọi người giúp mình bài BĐT với ạ
|
|
|
$(2+a)(1+b)=\frac92\Leftrightarrow a+2b+ab=\frac52$ Ta có $P=\sqrt{16+a^4}+\sqrt{16+16b^4}\geq \sqrt{64+(a^2+4b^2)^2}$ $(mincốpxki)$ Ta có theo BĐT Cô si $2a^2+2\ge4a$ $a^2+4b^2\ge 4ab$ $8b^2+2\ge 8b$ $\Rightarrow 3(a^2+4b^2)\ge4(a+2b+ab)-4=6\Rightarrow a^2+4b^2\ge2$ $\Rightarrow P\ge\sqrt{64+2^2}=2\sqrt{17}$ Dấu = xảy ra khi $a=1;b=\frac12$
|
|
|
|
sửa đổi
|
Toán 9
|
|
|
Toán 9 $\sqrt{11 }-2\sqrt{8} = a - b\sqrt{2}$ Voi $ab\in Z$ thì $a.b=$??/Giusp em với mọi người ơi!!!!\
Toán 9 $\sqrt{11-2\sqrt{8 }} = a - b\sqrt{2}$ Voi $ab\in Z$ thì $a.b=$??/Giusp em với mọi người ơi!!!!\
|
|
|
được thưởng
|
Đăng nhập hàng ngày 23/12/2015
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 22/12/2015
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 20/12/2015
|
|
|
|
|
|
bình luận
|
giải giùm mình mịa thế mà làm Holder chi cho khó hiểu :3 cả mất công CM :v
|
|
|
|
|
|
|
|
sửa đổi
|
giải giùm mình
|
|
|
$3a^8+5=a^8+a^8+a^8+1+1+1+1+1\ge 8a^3$Côsi 8sốtương tự cộng lại $3(a^8+b^8+c^8)+15\ge 8(a^3+b^3+c^3)\ge 24 $$\Leftrightarrow a^8+b^8+c^8\ge 3$
$3a^8+5=a^8+a^8+a^8+1+1+1+1+1\ge 8a^3$Côsi 8sốtương tự cộng lại $3(a^8+b^8+c^8)+15\ge 8(a^3+b^3+c^3)= 24 $$\Leftrightarrow a^8+b^8+c^8\ge 3$
|
|
|
giải đáp
|
giải giùm mình
|
|
|
$3a^8+5=a^8+a^8+a^8+1+1+1+1+1\ge 8a^3$Côsi 8số tương tự cộng lại $3(a^8+b^8+c^8)+15\ge 8(a^3+b^3+c^3)= 24 $ $\Leftrightarrow a^8+b^8+c^8\ge 3$
|
|
|
giải đáp
|
help
|
|
|
Gọi tam giác đó là $ABC, BC=a;CA=b;AB=c$ ta c ó $\frac12(a+b+c).r=S=\frac 12ah$ không đổi=> $r$$max$$\Leftrightarrow (b+c)$$min$ Kẻ AH vuông góc BC. Đặt $BH=x => CH=a-x$ => $AB+AC=\sqrt{h^2+x^2}+\sqrt{h^2+(a-x)^2}\geq \sqrt{(h+h)^2+(x+a-x)^2}=\sqrt{4h^2+a^2}$ Dấu bằng $\Leftrightarrow x=a-x$ hay tam giác ABC cân tại A
|
|
|