\begin{cases}2x^2+5x+4=2y+\sqrt{y+2x+3} \space \space (1)\\ y-3x-6-5\sqrt{2x-1}+2\sqrt{x-2}-2\sqrt[4]{2x-1}=0 \space \space (2)\end{cases}Điều kiện : $\begin{cases}x\ge2 \\ y+2x+3\ge0 \end{cases}$ (*)$(1)\Leftrightarrow (2x+5+2\sqrt{y+2x+3})(x+2-\sqrt{y+2x+3})=0$$\Leftrightarrow x+2=\sqrt{y+2x+3}$ vì $2x+5+2\sqrt{y+2x+3}>0 \space \forall$ x, y thoả (*)$\Leftrightarrow y=x^2+2x+1$Thay vào (2) ta được : ${{x}^{2}}-x-5-5\sqrt{2x-1}+2\sqrt{x-2}-2\sqrt[4]{2x-1}=0 \space \space (3)$$(3)\Leftrightarrow \left[ \frac{\left( 2x-1 \right)\sqrt[4]{2x-1}}{2}+\sqrt[4]{{{\left( 2x-1 \right)}^{3}}}+\frac{7\sqrt[4]{2x-1}}{2}+2+\frac{\left( 2x+6+\sqrt{2x-1} \right)\sqrt{x-2}}{4} \right]\left( \sqrt{x-2}-\sqrt[4]{2x-1} \right)=0$$\Leftrightarrow \sqrt{x-2}=\sqrt[4]{2x-1}$ vì [...] > 0 $\forall x\ge2$$\Leftrightarrow x=5 \Rightarrow y=36$Vậy hệ có nghiệm duy nhất $(5;36)$
\begin{cases}2x^2+5x+4=2y+\sqrt{y+2x+3} \space \space (1)\\ y-3x-6-5\sqrt{2x-1}+2\sqrt{x-2}-2\sqrt[4]{2x-1}=0 \space \space (2)\end{cases}Điều kiện : $\begin{cases}x\ge2 \\ y+2x+3\ge0 \end{cases}$ (*)$(1)\Leftrightarrow (2x+5+2\sqrt{y+2x+3})(x+2-\sqrt{y+2x+3})=0$$\Leftrightarrow x+2=\sqrt{y+2x+3}$ vì $2x+5+2\sqrt{y+2x+3}>0 \space \forall$ x, y thoả (*)$\Leftrightarrow y=x^2+2x+1$Thay vào (2) ta được : ${{x}^{2}}-x-5-5\sqrt{2x-1}+2\sqrt{x-2}-2\sqrt[4]{2x-1}=0 \space \space (3)$$(3)\Leftrightarrow \left[ \frac{\left( 2x-1 \right)\sqrt[4]{2x-1}}{2}+\sqrt[4]{{{\left( 2x-1 \right)}^{3}}}+\frac{7\sqrt[4]{2x-1}}{2}+2+\frac{\left( 2x+6+\sqrt{2x-1} \right)\sqrt{x-2}}{4} \right]\left( \sqrt{x-2}-\sqrt[4]{2x-1} \right)=0$$\Leftrightarrow \sqrt{x-2}=\sqrt[4]{2x-1}$ vì [...] > 0 $\forall x\ge2$$\Leftrightarrow x=5 \Rightarrow y=36$Vậy hệ có nghiệm duy nhất $(5;36)$