4(a3b3−−−−√+b3c3−−−−√+a3c3−−−−√)≤4c3+(a+b)3<=>4.33√2√a3.b3.c3 ≤ 4c3 + (a+b)3 (do a,b,c không âm)<=>126√a6.b6.c6 ≤ 4c3 + (a+b)3<=>12abc ≤ 4c3 + (a+b)3 (1)Ta có 4c3 + (a+b)3= a3 + b3 + c3 + 3a2.b + 3a.b2 + 3c3≥ 3abc + 33√27.a3.b3.c3=3abc+9abc=12abc=>bdt(1) đúngVậy..
4(a3b3−−−−√+b3c3−−−−√+a3c3−−−−√)≤4c3+(a+b)3<=>4.33√2√a3.b3.c3≤ 4(√a3b3 + √b3c3 + √a3c3)≤ 4c3 + (a+b)3<=>4.33√2√a3.b3.c3 ≤ 4c3 + (a+b)3 (do a,b,c không âm)<=>126√a6.b6.c6 ≤ 4c3 + (a+b)3<=>12abc ≤ 4c3 + (a+b)3 (1)Ta có 4c3 + (a+b)3= a3 + b3 + c3 + 3a2.b + 3a.b2 + 3c3≥ 3abc + 33√27.a3.b3.c3=3abc+9abc=12abc=>bdt(1) đúngVậy..