cosx + cos3x + 2cos5x=0<=>4cos3x−2cosx+2cos(3x+2x)=0<=>2cosx(2cos2−1)+2cos3xcos2x−2sin3xsin2x=0<=>cosxcos2x+cos3xcos2x−sin3xsin2x=0<=>cos2x(cosx+cos3x)−sin3xsin2x=0<=>2cos22xcosx−2sinxcosxsin3x=0<=> 2cosx(cos22x−sinxsin3x)=0<=>{cosx=0<=>x=π2+kπcos22x−sinxsin3x=0(∗)(∗)<=>cos22x−12(cos2x−cos4x)=0<=>cos22x−12cos2x+cos22x−12=0<=>$4cos^{2}2x - coss2x -1=0$
cosx + cos3x + 2cos5x=0<=>4cos3x−2cosx+2cos(3x+2x)=0<=>2cosx(2cos2−1)+2cos3xcos2x−2sin3xsin2x=0<=>cosxcos2x+cos3xcos2x−sin3xsin2x=0<=>cos2x(cosx+cos3x)−sin3xsin2x=0<=>2cos22xcosx−2sinxcosxsin3x=0<=> 2cosx(cos22x−sinxsin3x)=0<=>{cosx=0<=>x=π2+kπcos22x−sinxsin3x=0(∗)(∗)<=>cos22x−12(cos2x−cos4x)=0<=>cos22x−12cos2x+cos22x−12=0<=>4cos22x−cos2x−1=0