|
|
|
|
|
bình luận
|
tổ hơp, xác suất câu 1 kq đúng rồi, câu 2 thì m` đang nghiên cứu còn câu 3 b thiêu bộ số (2;2;5) thêm nữa bộ (1;4;4) chỉ có 3 t/h thôi
|
|
|
|
|
|
giải đáp
|
phương trình lượng giác..help
|
|
|
Ta co:
$sin5x+sin3x=2.sin4x.cosx$
$=4sin2x.cos2x.cosx$
$ =4sin2x.cosx(cosx-sinx)(cosx+sinx)$ Đk:$sin2x\neq 0;cosx\neq 0;cosx\neq \pm sinx$
Khi đó
pt$\Leftrightarrow \frac{\sqrt{2}(cosx-sinx)(1+2sin2x)}{4cosx(cosx+sinx)sin2x}=\frac{cosx-sinx}{cosx}$
$(cosx-sinx)[\frac{\sqrt2(1+2sin2x)}{4sin2x(cosx+sinx)}-1]=0$ vế sau m` giải mãi k ra nếu trên tử mà là $1+sin2x $ thì sẽ dễ rồi :))
|
|
|
đặt câu hỏi
|
tổ hơp, xác suất
|
|
|
Câu 1:Trên ba cạnh của một tam giác lần lượt cho $4,5,6$ điểm phân biệt. Tính xác suất để nối $3$ điểm với nhau từ các điểm đã cho lập thành một tam giác Câu 2:Có bao nhiêu số nguyên dương là ước của $75000$ Câu 3:Gieo ba con xúc xắc cân đối một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện của ba con xúc xắc bằng $9$
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 17/12/2013
|
|
|
|
|
|
bình luận
|
bài toán đếm số cái này là dãy số nên k cần dk a1 khác 0 ạ,với lại e hiểu cách làm rồi , e cám ơn!
|
|
|
|
|
|
bình luận
|
bài toán đếm số căn cứ vào đâu mà lại chia 2 ạ ? với lại đề ra là tổng các chữ số lẽ chứ đâu phải số đó lẻ đâu??
|
|
|
|
|
|
đặt câu hỏi
|
bài toán đếm số
|
|
|
1) Có bao nhiêu số tự nhiên gồm $7$ chữ số sao cho tổng các chữ số của mỗi số là 1 số lẻ? 2) Xét dãy số gồm $7$ chữ số thõa mãn điều kiện chữ số ở vị trí số $3$ là số chẵn, chữ số cuối không chia hết cho $5$, các chữ số ở vị trí $4,5,6$ đôi một khác nhau .Hỏi có bao nhiêu cách chọn?
|
|
|
được thưởng
|
Đăng nhập hàng ngày 16/12/2013
|
|
|
|
|
|
giải đáp
|
BPT đây, moi ng giup voi
|
|
|
$25m^2-2x<m^2x-25\Leftrightarrow x(m^2+2)>25m^2+25$ $\Leftrightarrow x>\frac{25m^2+25}{m^2+2}$ ta có: $x\in (15;+\infty) $ nên $\frac{25m^2+25}{m^2+2}\geq 15$ $\Leftrightarrow 10m^2\geq 5\Leftrightarrow m\geq \frac{1}{\sqrt2}$ hoặc $m\leq -\frac{1}{\sqrt2}$ Vậy $m\in(-\infty ;-\frac{1}{\sqrt2}]\cup [\frac{1}{\sqrt2};+\infty )$
|
|
|
giải đáp
|
Chứng minh đẳng thức lượng giác
|
|
|
Ta có: +)$3-4cos2a+cos4a=2cos^22a-4cos2a+2$ $=2(cos2a-1)^2$ $=2(1-2sin^2a-1)^2$ $=8sin^4a$ +)$3+4cos2a+cos4a=2(cos2a+1)^2$ $=8cos^4a$ Vậy $\frac{3-4cos2a+cos4a}{3+4cos2a+cos4a}=\frac{sin^4a}{cos^4a}=tan^4a$
|
|