+)Qua M ke MN//OA(N∈BC),MQ//SB(Q∈SA),NP//MQ//SB(P∈SC)⇒(β)≡(MNPQ)Ta co: NP//MQ( theo cach dung) ⇒MNPQ la hinh thang Mat khac: $\left\{ \begin{array}{l} SB AO\\ MN//AO\\NP//SB \end{array} \right.\Rightarrow MN |NPVayMNPQlahinhthangvuong+)Taco:BC=\frac{2a}{\sqrt3}\Rightarrow BO=OC=OA=\frac{a}{\sqrt3}MN//AO⇒BNBO=MNOA⇒MN=BN=xMQ//SB\Rightarrow \frac{MQ}{SB}=\frac{AM}{AB}=\frac{ON}{OB}=1-\frac{BN}{OB}⇒MQa=1−xa/√3⇒MQ=a−√3xNP//SB\Rightarrow \frac{NP}{SB}=\frac{CN}{BC}=1-\frac{BN}{BC}\Leftrightarrow \frac{NP}{a}=1-\frac{x\sqrt3}{2a}\Rightarrow NP=a-\frac{x\sqrt3}{2}$$S_{MNPQ}=(NP+MQ)MN/2$ ban tu tinh tiep nha! :)
+)Qua M ke MN//OA(N∈BC),MQ//SB(Q∈SA),NP//MQ//SB(P∈SC)⇒(β)≡(MNPQ)Ta co: NP//MQ( theo cach dung) ⇒MNPQ la hinh thang Mat khac: $\left\{ \begin{array}{l} SB \perp AO\\ MN//AO\\NP//SB \end{array} \right.\Rightarrow MN \perp NPVayMNPQlahinhthangvuong+)Taco:BC=\frac{2a}{\sqrt3}\Rightarrow BO=OC=OA=\frac{a}{\sqrt3}MN//AO⇒BNBO=MNOA⇒MN=BN=xMQ//SB\Rightarrow \frac{MQ}{SB}=\frac{AM}{AB}=\frac{ON}{OB}=1-\frac{BN}{OB}⇒MQa=1−xa/√3⇒MQ=a−√3xNP//SB\Rightarrow \frac{NP}{SB}=\frac{CN}{BC}=1-\frac{BN}{BC}\Leftrightarrow \frac{NP}{a}=1-\frac{x\sqrt3}{2a}\Rightarrow NP=a-\frac{x\sqrt3}{2}$$S_{MNPQ}=(NP+MQ)MN/2$ ban tu tinh tiep nha! :)