Phương trình vô tỉ
Giải các phương trình sau:1) 4x-x^{2}=3\sqrt{4-3\sqrt{10-3x}}2) (x+3)\sqrt{(4-x)(12+x)}=28-x3) 10x^{4}-14x^{2}+19=(5x^{2}-38)\sqrt{x^{2}-2}4) x^{3}-3x-\sqrt{x+2}=05) \sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}6) \sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}=56) \sqrt[3]{x^{2}}-2\sqrt[3]{x}-(x-4)\sqrt{x-7}-3x+28=07) x^{4}+2x^{3}+2x^{2}-2x=1=(x^{3}+x)\sqrt{\frac{1-x}{x^{2}}}8) x^{3}-\sqrt[3]{6+\sqrt[3]{x+6}}=69) \sqrt{2x^{2}+4x+7}=x^{4}+4x^{3}+3x^{2}-2x-710) \sqrt{1-x^{2}}+\sqrt[4]{x^{2}=x-1}+\sqrt[6]{1-x}=111) \sqrt{1-x^{2}}=(\frac{2}{3}-\sqrt{x})^{2}12) 64x^{6}-112x^{4}+56x^{2}-7=\sqrt{1-x^{2}}13) \sqrt{x}+\sqrt[3]{x+7}=\sqrt[4]{x+80}14) \sqrt[3]{x}+1=2(2x-1)^{2}15) (x-2)\sqrt{x-1}-\sqrt{2}x+2=016) 4x^{2}-4x-10=\sqrt{8x^{2}-6x-10}
Phương trình vô tỉ
Giải các phương trình sau:1)
$4x-x^{2}=3\sqrt{4-3\sqrt{10-3x}}
$2)
$(x+3)\sqrt{(4-x)(12+x)}=28-x
$3)
$10x^{4}-14x^{2}+19=(5x^{2}-38)\sqrt{x^{2}-2}
$4)
$x^{3}-3x-\sqrt{x+2}=0
$5)
$\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}
$6)
$\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-5}}}}=5
$6)
$\sqrt[3]{x^{2}}-2\sqrt[3]{x}-(x-4)\sqrt{x-7}-3x+28=0
$7)
$x^{4}+2x^{3}+2x^{2}-2x=1=(x^{3}+x)\sqrt{\frac{1-x}{x^{2}}}
$8)
$x^{3}-\sqrt[3]{6+\sqrt[3]{x+6}}=6
$9)
$\sqrt{2x^{2}+4x+7}=x^{4}+4x^{3}+3x^{2}-2x-7
$10)
$\sqrt{1-x^{2}}+\sqrt[4]{x^{2}=x-1}+\sqrt[6]{1-x}=1
$11)
$\sqrt{1-x^{2}}=(\frac{2}{3}-\sqrt{x})^{2}
$12)
$ 64x^{6}-112x^{4}+56x^{2}-7=\sqrt{1-x^{2}}
$13)
$\sqrt{x}+\sqrt[3]{x+7}=\sqrt[4]{x+80}
$14)
$\sqrt[3]{x}+1=2(2x-1)^{2}
$15)
$(x-2)\sqrt{x-1}-\sqrt{2}x+2=0
$16)
$4x^{2}-4x-10=\sqrt{8x^{2}-6x-10}
$