Định lý larang phát biểu như sau:
Nếu hàm số $f$ liên tục trên đoạn $\left[ {a ; b } \right]$ và khả vi trên khoảng $\left ( a ; b \right )$ thì tồn tại ít nhất một điểm $ c$ $\in $ $\left ( a ; b \right ) $ sao cho:
$\frac{f(b)-f(a)}{b-a} =$$ f^{'} ( c) $.
Câu hỏi đặt ra là liệu có hay không một hàm $f$ liên tục trên $\left[ {a ;b } \right]$ và khả vi trên $( a ; b)$ nhưng không tồn tại bất cứ điểm $c$ nào thuộc vào $ (a; b )$ thỏa mãn đẳng thức $\frac{f(b)-f(a)}{b-a} = f^{'}(c)$.