(1)⇔√(x+3y−2)2+4+(x+3y−2)=√(x−y)2+4−(x−y)Đặt u=x+3y−2;v=x−y⇔√u2+4+u=√v2+4−v⇔(u+v)(u+v√u2+v2−1)=0$\Leftrightarrow (u-v)(u+v-\sqrt{u^2+v^2})=0$$\left[ {\begin{matrix}u=v\\ \begin{cases}u=0 \\ v\ge0\end{cases} \\\begin{cases}u\ge0 \\ v=0 \end{cases}\end{matrix}} \right.$Thay dần vào :v
(1)⇔√(x+3y−2)2+4+(x+3y−2)=√(x−y)2+4−(x−y)Đặt
u=x+3y−2;v=x−y⇔√u2+4+u=√v2+4−v⇔(u+v)(u+v√u2+v2−1)=0$\Leftrightarrow (u
+v)(u+v-\sqrt{u^2+v^2})=0$$\left[ {\begin{matrix}u=
-v\\
{u=0v≥0 \\
{u≥0v=0\end{matrix}} \right.$Thay dần vào :v