$\int\limits_{}^{}(x\sqrt{2}+x^2)dx=\int\limits_{}^{}(x\sqrt{2})dx+\int\limits_{}^{}(x^2)dx=\sqrt{2}.\frac{x^2}{2}+\frac{x^3}{3}+C$
$\int\limits_{}^{}(x\sqrt{2}+x^2)dx=\int\limits_{}^{}(x\sqrt{2})dx+\int\limits_{}^{}(x^2)dx=\sqrt{2}.\frac{x^2}{2}+\frac{x^3}{3}$
$\int\limits_{}^{}(x\sqrt{2}+x^2)dx=\int\limits_{}^{}(x\sqrt{2})dx+\int\limits_{}^{}(x^2)dx=\sqrt{2}.\frac{x^2}{2}+\frac{x^3}{3}
+C$