Câu 2: P=xy.√z−4+yz.√x−2+xz.√y−3xyz⇒P=√z−4z+√x−2x+√y−3yCó √z−4=√4(z−4)2≤4+z−42.2=z4⇒√z−4z≤z4.1z=14Tương tự √x−2=√2(x−2)√2≤x2√2⇒√x−2x≤12√2√y−3=√3(y−3)√3≤y2√3⇒y−3y≤12.√3Vậy max=14+12.√2+12.√3.Dấu = xảy ra khi z=8;x=4;y=2
Câu 2:
P=xy.√z−4+yz.√x−2+xz.√y−3xyz⇒P=√z−4z+√x−2x+√y−3yCó
√z−4=√4(z−4)2≤4+z−42.2=z4⇒√z−4z≤z4.1z=14Tương tự
√x−2=√2(x−2)√2≤x2√2⇒√x−2x≤12√2$\sqrt{y-3}=\frac{\sqrt{3(y-3)}}{\sqrt{3}}\leq \frac{y}{2\sqrt{3}}\Rightarrow \frac{
\sqrt{y-3
}}{y}\leq \frac{1}{2.\sqrt{3}}
Vậymax=\frac{1}{4}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}
.Dấu=xảyrakhiz=8;x=4;y=2$