ban chiu kho tu ve hinh nhe!a,Trong mp(ABN): ME∩BN=J⇒{J∈MEJ∈BN⊂(BCD)⇒J=ME∈(BCD)b,∗ta co Q∈(EMQ)∩(BCD)(1) Trong mp (BCD):CD∩QJ=P⇒P∈(EMQ)∩(BCD)(2)Tu (1) va (2)$:(EMQ)\cap (ACD)=PQ$$*M\in (EMQ)\cap (ABD) $Trong mp$(ABD):EP\cap AD=F\Rightarrow F\in (EMQ)\cap (ABD)$$\Rightarrow (EMQ)\cap (ABD)=FM$c,Ta co:$\left\{ \begin{array}{l} (QME)\cap (ABC)=QM\\(QME)\cap (BCD)=QP\\(QME)\cap(ACD)=FP\\ (QME)\cap(ABD)=MF \end{array} \right.$Vay thiet dien cat boi mp$(QME)$la tu giac $FMQP$
ban chiu kho tu ve hinh nhe!a,Trong mp
(ABN):
ME∩BN=J⇒{J∈MEJ∈BN⊂(BCD)⇒J=ME∈(BCD)b,
∗ta co
Q∈(EMQ)∩(BCD)(1) Trong mp
(BCD):CD∩QJ=P⇒P∈(EMQ)∩(BCD)(2)Tu
(1) va
(2)$:(EMQ)\cap (
BCD)=PQ$$*M\in (EMQ)\cap (ABD) $Trong mp$(A
CD):EP\cap AD=F\Rightarrow F\in (EMQ)\cap (ABD)$$\Rightarrow (EMQ)\cap (ABD)=FM$c,Ta co:$\left\{ \begin{array}{l} (QME)\cap (ABC)=QM\\(QME)\cap (BCD)=QP\\(QME)\cap(ACD)=FP\\ (QME)\cap(ABD)=MF \end{array} \right.$Vay thiet dien cat boi mp$(QME)$la tu giac $FMQP$