Ta co:$(1+x)^{r}=C^{0}_{r}+C^{1}_{r}x+C^{2}_{r}x^{2}+...+C^{r}_{r}x^{r}$ $(1+x)^{q}=C^{0}_{q}+C^{1}_{q}x+C^{2}_{q}x^{2}+...+C^{q}_{q}x^{q}$He so $x^{p}$ trong tich $(1+x)^{r}(1+x)^{q}la:$ $C^{0}_{r}.C^{p}_{q}+C^{1}_{0}.C^{p-1}_{q}+...+C^{p}_{r}.C^{0}_{q}$ (1)ta lai co:$(1+x)^{r+p}=C^{0}_{r+q}+...+C^{p}_{r+q}x^{p}+...+C^{r+q}_{r+q}.x^{r+q}$He so $x^{p}$ trong $(1+x)^{r+q} $ la $C^{p}_{r+q} (2)$ma $(1+x)^{r}.(1+x)^{q}=(1+x)^{q+r}$nen tu $(1)$ va $(2)$ $\Rightarrow $dpcm
Ta c
ó:$(1+x)^{r}=C^{0}_{r}+C^{1}_{r}x+C^{2}_{r}x^{2}+...+C^{r}_{r}x^{r}$ $(1+x)^{q}=C^{0}_{q}+C^{1}_{q}x+C^{2}_{q}x^{2}+...+C^{q}_{q}x^{q}$H
ệ s
ố $x^{p}$ trong t
ích $(1+x)^{r}(1+x)^{q}l
à:$ $C^{0}_{r}.C^{p}_{q}+C^{1}_{0}.C^{p-1}_{q}+...+C^{p}_{r}.C^{0}_{q}$ (1)ta l
ại c
ó:$(1+x)^{r+p}=C^{0}_{r+q}+...+C^{p}_{r+q}x^{p}+...+C^{r+q}_{r+q}.x^{r+q}$H
ệ s
ố $x^{p}$ trong $(1+x)^{r+q} $ l
à $C^{p}_{r+q}
$ (2)
Mà $(1+x)^{r}.(1+x)^{q}=(1+x)^{q+r}
n
ên t
ừ $(1)$
va
$(2)$ \Rightarrow
dpcm
$