$B = \frac{2}{1.4} + \frac{2}{4.7} + ..... + \frac{2}{97.100}$$=\frac{2}{3}.(\frac{3}{1.4} + \frac{3}{4.7} + ..... + \frac{3}{97.100})$$=\frac{2}{3}.(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100})$$=\frac{2}{3}.(1-\frac{1}{100})$$=\frac{33}{50}$$\Rightarrow 100B=66$
$B = \frac{2}{1.4} + \frac{2}{4.7} + ..... + \frac{2}{97.100}$$=\frac{2}{3}.(\frac{3}{1.4} + \frac{3}{4.7} + ..... + \frac{3}{97.100})$$=\frac{2}{3}.(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100})$$=\frac{2}{3}.(1-\frac{1}{100})$$=\frac{33}{50}$
$B = \frac{2}{1.4} + \frac{2}{4.7} + ..... + \frac{2}{97.100}$$=\frac{2}{3}.(\frac{3}{1.4} + \frac{3}{4.7} + ..... + \frac{3}{97.100})$$=\frac{2}{3}.(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100})$$=\frac{2}{3}.(1-\frac{1}{100})$$=\frac{33}{50}$
$\Rightarrow 100B=66$