$x^3 + y^3 + z^3 ≥ 3xyz$$( x + y )^3 – 3xy( x + y) + z^3 -3xyz ≥ 0$$( x + y + z )[ ( x + y)^2 - ( x + y)z + z^2 ] -3xy( x + y + z ) ≥ 0$$( x + y + z)( x^2 + y^2 + z^2 + 2xy – xz - yz ) -3xy( x + y + z ) ≥ 0$$( x + y + z )( x^2 + y^2 + z^2 – xy – yz – zx ) ≥ 0$$( x + y + z )( 2x^2 + 2y^2 + 2z^2 – 2xy – 2yz – 2zx ) ≥ 0$$( x + y + z )[ ( x – y )^2 + ( y – z )^2 + ( x – z )^2] ≥0 (đúng với mọi x,y,z ≥ 0)$Dấu bằng xảy ra khi : $x = y = z$Tương đương $a = b = c$
Đặt $x = \sqrt[3]a ; y = \sqrt[3]b ; z = \sqrt[3]z$Suy ra $x,y,z ≥ 0$Suy ra $x + y + z ≥ 0$BĐT quy về $x^3 + y^3 + z^3 ≥ 3xyz$$( x + y )^3 – 3xy( x + y) + z^3 -3xyz ≥ 0$$( x + y + z )[ ( x + y)^2 - ( x + y)z + z^2 ] -3xy( x + y + z ) ≥ 0$$( x + y + z)( x^2 + y^2 + z^2 + 2xy – xz - yz ) -3xy( x + y + z ) ≥ 0$$( x + y + z )( x^2 + y^2 + z^2 – xy – yz – zx ) ≥ 0$$( x + y + z )( 2x^2 + 2y^2 + 2z^2 – 2xy – 2yz – 2zx ) ≥ 0$$( x + y + z )[ ( x – y )^2 + ( y – z )^2 + ( x – z )^2] ≥0 (đúng với mọi x,y,z ≥ 0)$Dấu bằng xảy ra khi : $x = y = z$Tương đương $a = b = c$
$x^3 + y^3 + z^3 ≥ 3xyz$$( x + y )^3 – 3xy( x + y) + z^3 -3xyz ≥ 0$$( x + y + z )[ ( x + y)^2 - ( x + y)z + z^2 ] -3xy( x + y + z ) ≥ 0$$( x + y + z)( x^2 + y^2 + z^2 + 2xy – xz - yz ) -3xy( x + y + z ) ≥ 0$$( x + y + z )( x^2 + y^2 + z^2 – xy – yz – zx ) ≥ 0$$( x + y + z )( 2x^2 + 2y^2 + 2z^2 – 2xy – 2yz – 2zx ) ≥ 0$$( x + y + z )[ ( x – y )^2 + ( y – z )^2 + ( x – z )^2] ≥0 (đúng với mọi x,y,z ≥ 0)$Dấu bằng xảy ra khi : $x = y = z$Tương đương $a = b = c$