ĐK x≠π4+kπ2;x≠π2+kπpt⇔sin3x+sin(x−π2)cos2x=√2(sin2x+2sinxcosx−cos2x)cos2x−sin2x⇔2sin(2x−π4)cos(x+π4)=2sin(2x−π4)$\Leftrightarrow x=\frac{\pi}4+k\frac{\pi}2 \veebar x=-\frac{\pi}4+k2\pi$KHĐK => pt vô nghịêm
ĐK
x≠π4+kπ2;x≠π2+kπpt⇔sin3x+sin(x−π2)cos2x=√2(sin2x+2sinxcosx−cos2x)cos2x−sin2x⇔2sin(2x−π4)cos(x+π4)=2sin(2x−π4)$\Leftrightarrow x=\frac{\pi}
8+k\frac{\pi}2 \veebar x=-\frac{\pi}4+k2\pi$