Đặt z=x+yi
(x,y∈R)*\left| {\frac{{z + 1 - 2i}}{{\bar z + 3 + 4i}}} \right| = 1⇔|z+1−2i|=|ˉz+3+4i| \Leftrightarrow \left| {(x + 1) + (y - 2)i} \right| = \left| {(x + 3) + ( - y + 4)i} \right|⇔(x+1)2+(y−2)2=(x+3)2+(−y+4)2 \Leftrightarrow x - y + 5 = 0(1)*\frac{{z - 2i}}{{\bar z + i}} = \frac{{x + (y - 2)i}}{{x + ( - y + 1)i}} = \frac{{\left[ {x + (y - 2)i} \right]\left[ {x - ( - y + 1)i} \right]}}{{{x^2} + {{( - y + 1)}^2}}} = \frac{{{x^2} - {y^2} + 3y - 2}}{{{x^2} + {{( - y + 1)}^2}}} + \frac{{2xy - 3x}}{{{x^2} + {{( - y + 1)}^2}}}iĐể\frac{z-2i}{\overline{z}+i} là số ảo
thì {x^2} - {y^2} + 3y - 2 = 0 (2)* (1), (2) \Rightarrow x = - \frac{{12}}{7},y = \frac{{23}}{7}Vậy z = - \frac{{12}}{7} + \frac{{23}}{7}i$
Đặt
z=x+yi
($x,y \in R
$)
*\left| {\frac{{z + 1 - 2i}}{{\bar z + 3 + 4i}}} \right| = 1\Leftrightarrow \left| {z + 1 - 2i} \right| = \left| {\bar z + 3 + 4i} \right| \Leftrightarrow \left| {(x + 1) + (y - 2)i} \right| = \left| {(x + 3) + ( - y + 4)i} \right| \Leftrightarrow {(x + 1)^2} + {(y - 2)^2} = {(x + 3)^2} + {( - y + 4)^2} \Leftrightarrow x - y + 5 = 0 (1)
*\frac{{z - 2i}}{{\bar z + i}} = \frac{{x + (y - 2)i}}{{x + ( - y + 1)i}} = \frac{{\left[ {x + (y - 2)i} \right]\left[ {x - ( - y + 1)i} \right]}}{{{x^2} + {{( - y + 1)}^2}}} = \frac{{{x^2} - {y^2} + 3y - 2}}{{{x^2} + {{( - y + 1)}^2}}} + \frac{{2xy - 3x}}{{{x^2} + {{( - y + 1)}^2}}}iĐể
\frac{z-2i}{\overline{z}+i} là số ảo
thì
{x^2} - {y^2} + 3y - 2 = 0 (2)* (1), (2)
\Rightarrow x = - \frac{{12}}{7},y = \frac{{23}}{7}Vậy
z = - \frac{{12}}{7} + \frac{{23}}{7}i