Ta có: x+1x=aTa có:A=(x+1x)3−3(x+1x)=a3−3aB=(x3+1x3)2−2=(a3−3a)2−2x2+1x2=(x+1x)2−2=a2−2x4+1x4=(x2+1x2)2−2=(a2−2)2−2=a4−4a2+2C=(x3+1x3)(x4+1x4)−x−1x=(a3−3a)(a4−4a2−2)−a
Ta có:
x+1x=aTa có:
A=(x+1x)3−3(x+1x)=a3−3aB=(x3+1x3)2−2=(a3−3a)2−2x2+1x2=(x+1x)2−2=a2−2x4+1x4=(x2+1x2)2−2=(a2−2)2−2=a4−4a2+2C=(x3+1x3)(x4+1x4)−x−1x=(a3−3a)(a4−4a2−2)−a