$(\sin x +3)(\sin^4 \frac{x}{2}- \sin^2 \frac{x}{2})+1=0$$\Leftrightarrow (\sin x +3) \sin^2 \frac{x}{2} (\sin^2 \frac{x}{2}-1) +1 =0$$\Leftrightarrow - (\sin x +3) \sin^2 \frac{x}{2}. \cos^2 \frac{x}{2} +1 =0$$\Leftrightarrow -(\sin x +3) \frac{(2 \sin \frac{x}{2}. \cos \frac{x}{2})^2}{4} +1 =0$$\Leftrightarrow -(\sin x +3) \frac{\sin^2 x}{4} +1 =0$$\Leftrightarrow -\sin^3 x -3 \sin^2 x +4 =0$
$(\sin x +3)(\sin^4 \frac{x}{2}- \sin^2 \frac{x}{2})+1=0$$\Leftrightarrow (\sin x +3) \sin^2 \frac{x}{2} (\sin^2 \frac{x}{2}-1) +1 =0$$\Leftrightarrow (\sin x +3) \sin^2 \frac{x}{2}. \cos^2 \frac{x}{2} +1 =0$$\Leftrightarrow (\sin x +3) \frac{(2 \sin \frac{x}{2}. \cos \frac{x}{2})^2}{4} +1 =0$$\Leftrightarrow (\sin x +3) \frac{\sin^2 x}{4} +1 =0$$\Leftrightarrow \sin^3 x +3 \sin^2 x +4 =0$
$(\sin x +3)(\sin^4 \frac{x}{2}- \sin^2 \frac{x}{2})+1=0$$\Leftrightarrow (\sin x +3) \sin^2 \frac{x}{2} (\sin^2 \frac{x}{2}-1) +1 =0$$\Leftrightarrow
- (\sin x +3) \sin^2 \frac{x}{2}. \cos^2 \frac{x}{2} +1 =0$$\Leftrightarrow
-(\sin x +3) \frac{(2 \sin \frac{x}{2}. \cos \frac{x}{2})^2}{4} +1 =0$$\Leftrightarrow
-(\sin x +3) \frac{\sin^2 x}{4} +1 =0$$\Leftrightarrow
-\sin^3 x
-3 \sin^2 x +4 =0$