$bài 1:ch o: a,b,c>0$ $a,t/m:a+b+c =3:CM:\frac {1}{2+a^2+b^2}+\fr ac{1}{2+b ^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac {3}{4}$ $b, CM:\frac{\s qrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt {bc}}+\frac{\s qrt{ca }}{b+3\sqrt{ac}}\leq \frac{3}{4}$ $c,CM:\frac{1}{(a+b)^2}+bài 1:cho: a,b,c>0a,t/m:a+b+c=3:CM:\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac{3}{4}b,CM:\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ac}}\leq \frac{3}{4}c,CM:\frac{1}{(a+b)^2}+\frac{1}{(a+c)^2}\geq \frac{1}{a^2+bc}d,CM:\Sigma \frac{1}{a^5+b^2+c^2}\leq \frac{3}{a^2+b^2+c^2}e,CM:\Sigma \frac{a+b}{c^2+ab}\leq \frac{1}{b}+\frac{1}{a}+\frac{1}{c}
Bất đẳng thức Bu-nhi-a-cốp-xki
e ngh ĩ hết c ác h r mà toàn b ị ngược dấu, mấy s ư t ỉ và s ư ca giúp vsbài 1:cho: a,b,c>0a,t/m:a+b+c=3:CM:\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac{3}{4}b,CM:\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ac}}\leq \frac{3}{4}c,CM:\frac{1}{(a+b)^2}+\frac{1}{(a+c)^2}\geq \frac{1}{a^2+bc}d,CM:\Sigma \frac{1}{a^5+b^2+c^2}\leq \frac{3}{a^2+b^2+c^2}e,CM:\Sigma \frac{a+b}{c^2+ab}\leq \frac{1}{b}+\frac{1}{a}+\frac{1}{c}
Bất đẳng thức Bu-nhi-a-cốp-xki
$bài 1:ch o: a,b,c>0$ $a,t/m:a+b+c =3:CM:\frac {1}{2+a^2+b^2}+\fr ac{1}{2+b ^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac {3}{4}$ $b, CM:\frac{\s qrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt {bc}}+\frac{\s qrt{ca }}{b+3\sqrt{ac}}\leq \frac{3}{4}$ $c,CM:\frac{1}{(a+b)^2}+bài 1:cho: a,b,c>0a,t/m:a+b+c=3:CM:\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}\frac{1}{2+c^2+a^2}\leq \frac{3}{4}b,CM:\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ac}}\leq \frac{3}{4}c,CM:\frac{1}{(a+b)^2}+\frac{1}{(a+c)^2}\geq \frac{1}{a^2+bc}d,CM:\Sigma \frac{1}{a^5+b^2+c^2}\leq \frac{3}{a^2+b^2+c^2}e,CM:\Sigma \frac{a+b}{c^2+ab}\leq \frac{1}{b}+\frac{1}{a}+\frac{1}{c}
Bất đẳng thức Bu-nhi-a-cốp-xki
|