Tìm max $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}
cho các số thực $a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0$
Thỏa mãn $\left\{
\begin{a
rr
ay}
{l}a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0 \\ a_{1}+a_{2}\leq 2002\\a_{3}+a_{4}+...+a_{100}\leq 2002 \end{a
rr
ay}
\right.$Tìm giá trị lớn nhất của biểu thức : $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}
$.Tìm các số
$a_{1},a_{2},...a_{100}$ tương ứng
GTLN, GTNN
Tìm max $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}
cho các số thực $a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0$
thỏa mãn
: $\left\{\begin{
ma
tr
ix}
$a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0
$ & & \\ a_{1}+a_{2}\leq 2002
& & \\
a_{3}+a_{4}+...+a_{100}\leq 2002
& & \end{
ma
tr
ix}\right.$Tìm giá trị lớn nhất của biểu thức : $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}.Tìm các số a_{1},a_{2},...a_{100}$ tương ứng
GTLN, GTNN
Tìm max $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}
cho các số thực $a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0$
Thỏa mãn $\left\{
\begin{a
rr
ay}
{l}a_{1}\geq a_{2}\geq ...\geq a_{100}\geq 0 \\ a_{1}+a_{2}\leq 2002\\a_{3}+a_{4}+...+a_{100}\leq 2002 \end{a
rr
ay}
\right.$Tìm giá trị lớn nhất của biểu thức : $S=a{_{1}}^{2}+a{_{2}}^{2}+...+a{_{100}}^{2}
$.Tìm các số
$a_{1},a_{2},...a_{100}$ tương ứng
GTLN, GTNN