Dễ dàng chứng minh $a^2+ab+b^2 \ge \frac 34(a+b)^2$Cmtt
$\Rightarrow VT \ge \sqrt{\frac 34}\left(\frac{a+b}{bc+4} +\frac{b+c}{ca+4}+\frac{c+a}{ab+4}\right)=\sqrt{\frac 34}.A$
Dùng bất đẳng thức hoán vị, ta có:
$A=\left(\frac{a}{bc+4} +\frac{b}{ca+4}+\frac{c}{ab+4}\right)+\left(\frac{b}{bc+4} +\frac{c}{ca+4}+\frac{a}{ab+4}\right)$
$\ge \left(\frac{c}{bc+4}+\frac{a}{ca+4}+\frac{b}{ab+4}\right)+\left(\frac{b}{bc+4} +\frac{c}{ca+4}+\frac{a}{ab+4}\right)$
$=\frac{b+c}{bc+4}+\frac{c+a}{ca+4}+\frac{a+b}{ab+4} =S$
Đến đây dùng bdt chebychev :$S \ge \frac 13[(b+c)+(c+a)+(a+b)\left[ \frac{1}{bc+4} +\frac{1}{ca+4}+\frac{1}{ab+4}\right]$
$ \ge 4.\frac{9}{ab+bc+ca+12} \ge \frac 32$3
Suy ra $VT \ge \sqrt{\frac 34}.\frac 32$
Suy ra $\min=\sqrt{\frac 34}.\frac 32$ khi $a=b=c=2$