. $\sqrt[3]{2x+3}+1=x^{3}+3x^{2}+2x$
$\Leftrightarrow (2x+3)+\sqrt[3]{2x+3}=(x+1)^3+x+1$
$\Leftrightarrow f(\sqrt[3]{2x+3})=f(x+1)$ $(\bigstar)$ với $f(t)=t^3+t.$
Xét $f(t)=t^3+t,$ có: $f'(t)=3t^2+1>0,\forall t.$ Suy ra $f(t)$ đồng biến trên $\mathbb R.$
Do đó:
$(\bigstar)\Leftrightarrow \sqrt[3]{2x+3}=x+1$
$\Leftrightarrow 2x+3=(x+1)^3$
$\Leftrightarrow x^3+3x^2+x-2=0$
$\Leftrightarrow (x+2)(x^2+x-1)=0$
$\Leftrightarrow \color{green}{\left[ \begin{array}{l} x=-2\\ x=\frac{-1\pm \sqrt{5}}{2}. \end{array} \right.}$