Ta có:
$2^{x^2+x}-4.2^{x^2-x}-2^{2x}+4=0$
$\Leftrightarrow 2^{x^2-x}(2^{2x}-4)-(2^{2x}-4)=0$
$\Leftrightarrow (2^{2x}-4)(2^{x^2-x}-1)=0$
$\Leftrightarrow \left[\begin{array}{l}2^{2x}=4\\2^{x^2-x}=1\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x=1\\x^2=x\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x=1\\x=0\end{array}\right.$