Áp dụng BĐT Cauchy ta có:
$\dfrac{a^3}{(b+c)^2}+\dfrac{b+c}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{(b+c)^2}.\dfrac{b+c}{8}.\dfrac{b+c}{8}}=\dfrac{3a}{4}$
$\dfrac{b^3}{(c+a)^2}+\dfrac{c+a}{8}+\dfrac{c+a}{8}\ge3\sqrt[3]{\dfrac{b^3}{(c+a)^2}.\dfrac{c+a}{8}.\dfrac{c+a}{8}}=\dfrac{3b}{4}$
$\dfrac{c^3}{(a+b)^2}+\dfrac{a+b}{8}+\dfrac{a+b}{8}\ge3\sqrt[3]{\dfrac{c^3}{(a+b)^2}.\dfrac{a+b}{8}.\dfrac{a+b}{8}}=\dfrac{3c}{4}$
Suy ra: $\dfrac{a^3}{(b+c)^2}+\dfrac{b^3}{(c+a)^2}+\dfrac{c^3}{(a+b)^2}\ge\dfrac{a+b+c}{4}$
Dấu bằng xảy ra khi $a=b=c$.