Đặt: f(x;y;z)=x2+y2+z2+4xyz
Ta có: f(x;y;z+t)≥f(x;y;z),∀t≥0, nên minA đạt được tại x+y+z=1.
Vì vậy, ta chỉ cần xét: x+y+z=1
Áp dụng BĐT AM-GM ta có:
(x+y−z)(x−y+z)≤(x+y−z+x−y+z)24=x2
(x+y−z)(−x+y+z)≤(x+y−z−x+y+z)24=y2
(x−y+z)(−x+y+z)≤(x−y+z−x+y+z)24=z2
Suy ra: ((x+y−z)(x−y+z)(−x+y+z))2≤(xyz)2
⇒(x+y−z)(x−y+z)(−x+y+z)≤|(x+y−z)(x−y+z)(−x+y+z)|≤xyz
⇒(1−2z)(1−2y)(1−2x)≤xyz
⇔1−2(x+y+z)+4(xy+yz+zx)−8xyz≤xyz
⇔xy+yz+zx≤94xyz+14
Ta có:
A=x2+y2+z2+4xyz
=(x+y+z)2−2(xy+yz+zx)+4xyz
≥1−2(94xyz+14)+4xyz
=12−12xyz
=12−12.(x+y+z)327=1327
minA=1327⇔x=y=z=13