Gọi z=x+yi với x,y∈R.
Ta có:
|z|=√x2+y2
z2+4=x2−y2+4+2xyi
|z2+4|=2|z|⇔(x2−y2+4)2+4x2y2=4(x2+y2)
⇔x4+y4+16+8x2−8y2−2x2y2+4x2y2−4x2−4y2=0
⇔x4+y4+2x2y2+4x2−12y2+16=0
⇔(x2+y2)2+4x2−12(|z|2−x2)+16=0
⇔|z|4−12|z|2+16x2+16=0
Δ′=36−(16x2+16)=20−16x2
Do |z|2 tồn tại nên 20−16x2≥0⇔−√52≤x≤√52.
Khi đó: |z|2=6±√20−16x2
⇔|z|=√6±√20−16x2 trong đó −√52≤x≤√52
Min|z|=√6−√20=√5−1⇔x=0,y=√5−1⇔z=(√5−1)i
Max|z|=√6+√20=√5+1⇔x=0,y=√5+1⇔z=(√5+1)i